
SMART CONTRACTS REVIEW

March 5th 2024 | v.	1.0

score

97

PASS
Zokyo Security has concluded that

these smart contracts passed a

security audit.

Security Audit Score

Zokyo Audit Scoring Repl

1

Repl Smart Contracts Review

1. Severity of Issues:

 - Critical: Direct, immediate risks to funds or the integrity of the contract. Typically, these
would have a very high weight.

 - High: Important issues that can compromise the contract in certain scenarios.

 - Medium: Issues that might not pose immediate threats but represent significant
deviations from best practices.

 - Low: Smaller issues that might not pose security risks but are still noteworthy.

 - Informational: Generally, observations or suggestions that don't point to vulnerabilities
but can be improvements or best practices.

2. Test Coverage: The percentage of the codebase that's covered by tests. High test
coverage often suggests thorough testing practices and can increase the score.

3. Code Quality: This is more subjective, but contracts that follow best practices, are well-
commented, and show good organization might receive higher scores.

4. Documentation: Comprehensive and clear documentation might improve the score, as it
shows thoroughness.

5. Consistency: Consistency in coding patterns, naming, etc., can also factor into the score.

6. Response to Identified Issues: Some audits might consider how quickly and effectively
the team responds to identified issues.

Hypothetical Scoring Calculation:

2

Repl Smart Contracts Review

Let's assume each issue has a weight:

- Critical: -30 points

- High: -20 points

- Medium: -10 points

- Low: -5 points

- Informational: -1 point

Starting with a perfect score of 100:

- 0 Critical issues: 0 points deducted 
- 0 High issues: 0 points deducted 
- 0 Medium issues: 0 points deducted

- 2 Low issues: 2 acknowledged issues = - 3 points deducted

- 2 Informational issues: 2 resolved issues = 0 points deducted
 

Thus, 100 - 3 = 97

3

Repl Smart Contracts Review

This document outlines the overall security of the Repl smart contract/s evaluated by the
Zokyo Security team.

Technical Summary

The scope of this audit was to analyze and document the Repl smart contract/s codebase
for quality, security, and correctness.

There were 0 critical issues found during the review. (See Complete Analysis)

Contract Status

low Risk

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract/s but rather limited to an assessment of the logic and implementation. In order
to ensure a secure contract that can withstand the Ethereum network’s fast-paced and
rapidly changing environment, we recommend that the Repl team put in place a bug bounty
program to encourage further active analysis of the smart contract/s.

https://docs.google.com/document/d/1m2vatjc_MOYvEKxLzVnjVGnjJl3a-oJwYa7b19PeIao/edit#heading=h.y413rcm4r1gs

4

repl Smart Contracts Review

9Complete Analysis

7Executive Summary

8Structure and Organization of the Document

5Auditing Strategy and Techniques Applied

Table of Contents

Auditing Strategy and Techniques Applied

5

Repl Smart Contracts Review

Within the scope of this audit, the team of auditors reviewed the following contract(s):

The source code of the smart contract was taken from the Repl repository:  
Repo: https://github.com/Project-pFIL/pFIL-contracts/

The last fix - PR: https://github.com/Project-pFIL/pFIL-contracts/pull/92

Last commit: 8f0b5ecb58315132df11d62422c45c8ab05b88a8

contracts/AgentImplementation.sol

contracts/Repl.sol

contracts/ReplAuction.sol

contracts/interfaces/Interface.sol

During the audit, Zokyo Security ensured that the contract:

Implements and adheres to the existing standards appropriately and effectively;

The documentation and code comments match the logic and behavior;

Distributes tokens in a manner that matches calculations;

Follows best practices, efficiently using resources without unnecessary waste;

Uses methods safe from reentrance attacks;

Is not affected by the most recent vulnerabilities;

Meets best practices in code readability, etc.

https://github.com/Project-pFIL/pFIL-contracts/
https://github.com/Project-pFIL/pFIL-contracts/pull/92

01 Due diligence in assessing the overall
code quality of the codebase.

02 Cross-comparison with other, similar
smart contract/s by industry leaders.

03 Thorough manual review of the
codebase line by line.

6

Repl Smart Contracts Review

Zokyo Security has followed best practices and industry-standard techniques to verify the
implementation of Repl smart contract/s. To do so, the code was reviewed line by line by our
smart contract developers, who documented even minor issues as they were discovered. In
summary, our strategies consist largely of manual collaboration between multiple team
members at each stage of the review:

7

repl Smart Contracts Review

Executive Summary

The Zokyo team has performed a security audit of the provided codebase. The contracts
submitted for auditing are well-crafted and organized. Detailed findings from the audit
process are outlined in the "Complete Analysis" section.

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the
contract’s ability to operate.

Informational

The issue affects the ability of the
contract to compile or operate in a
significant way.

High

The issue affects the ability of the
contract to operate in a way that
doesn’t significantly hinder its
behavior.

Medium

The issue affects the contract in such
a way that funds may be lost,
allocated incorrectly, or otherwise
result in a significant loss.

Critical

For the ease of navigation, the following sections are arranged from the most to the least
critical ones. Issues are tagged as “Resolved” or “Unresolved” or “Acknowledged” depending
on whether they have been fixed or addressed. Acknowledged means that the issue was
sent to the Repl team and the Repl team is aware of it, but they have chosen to not solve it.
The issues that are tagged as “Verified” contain unclear or suspicious functionality that
either needs explanation from the Client or remains disregarded by the Client. Furthermore,
the severity of each issue is written as assessed by the risk of exploitation or other
unexpected or otherwise unsafe behavior:

Structure and Organization of the Document

8

Repl Smart Contracts Review

9

Repl Smart Contracts Review

Complete Analysis

Findings summary

Acknowledged

Resolved

Low

Informational

RiskTitle# Status

Resolved

Acknowledged

Informational3

Low1

Redundant condition in withdrawal validation logic

2

4

Use of single step ownership transfer

Lack of return validation in ERC20 transfer

Potential gas inefficiency due to unneeded
public accessibility

10

Repl Smart Contracts Review

 Low-1 Acknowledged

Use of single step ownership transfer

The multiple contracts in the protocol use the OwnableUpgradeable contract which allows
changing the owner address. However, this contract does not implement a 2-step-process
for transferring ownership. If the admin’s address is set incorrectly, this could potentially
result in critical functionalities becoming locked.

Recommendation:

Consider implementing a two-step pattern. Utilize OpenZeppelin's
Ownable2StepUpgradeable contract.

https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/Ownable2StepUpgradeable.sol

11

Repl Smart Contracts Review

 Low-2 Acknowledged

Lack of Return Value Validation in ERC20 Transfer

Location: AgentImplementation.sol

The smart contract initiates ERC20 token transfers without validating the return value of the
transfer operation. Failing to check the return value may result in unhandled failures,
exposing the contract to potential vulnerabilities and financial risks. The absence of return
value validation may lead to unhandled transfer failures, causing unintended consequences
in contract state and potentially resulting in financial losses.

This is taking place in 2 occurrences:

In function reclaimOwnerAddress -

if (_pFILBalance > 0) {

 IPFIL(pFIL).transfer(owner, _pFILBalance);

}

Also in function paybackPFIL -

IPFIL(pFIL).transferFrom(msg.sender, address(this), _receive);

Recommendation:

Validate Return Values: Implement validation checks on the return value of ERC20 token
transfers to handle success or failure appropriately.

12

Repl Smart Contracts Review

Recommendation:

Simplify conditional checks. Revise the conditional statement to eliminate redundancy,
ensuring clarity and efficiency in logic. The recommended condition would be:

Informational-1 Resolved

Redundant condition in withdrawal validation logic

The condition within the if statement in the agentWithdrawFromMiner function contains
redundancy. Specifically, the two conditions are attempting to ensure that after the
withdrawal, there is still enough balance left to meet the reserved balance requirement.

However, the second condition implicitly covers the first. If _total is less than
getReservedBalance() + amount, it is inherently less than or equal to getReservedBalance()
alone since amount is assumed to be a positive number. Therefore, the first condition (_total
< getReservedBalance()) is unnecessary because if the second condition is true, the first is
automatically true as well.

13

Repl Smart Contracts Review

Recommendation:

To optimize gas usage and promote efficiency, it is recommended to adjust visibility levels
by changing the visibility of functions that are not utilized internally to external, considering
potential gas savings.

Informational-2 Resolved

Potential Gas Inefficiency due to unneeded public accessibility

The smart contracts declare certain functions as public, even though they are not invoked
from within the contract (i.e. internally). This could lead to potential gas inefficiency, as
external function calls may offer more gas-efficient execution compared to public functions.

// ReplAuction.sol

function getRemainingFILForAuction() public view returns (uint)

function auctionIsExpired(address _agent) public view returns (bool)

// AgentImplementation.sol

function calculateSafePledge() public onlyOwner

PassAccess Management Hierarchy

Arithmetic Over/Under Flows Pass

contracts/AgentImplementation.sol

contracts/Repl.sol

contracts/ReplAuction.sol

contracts/interfaces/Interface.sol

PassDelegatecall

PassHidden Malicious Code

PassUnchecked CALL
Return Values

PassExternal Contract Referencing

PassGeneral Denial Of Service (DOS)

PassFloating Points and Precision

PassSignatures Replay

Pass
Pool Asset Security (backdoors in the
underlying ERC-20)

PassRe-entrancy

PassUnexpected Ether

PassDefault Public Visibility

PassEntropy Illusion (Lack of Randomness)

PassShort Address/ Parameter Attack

PassRace Conditions / Front Running

PassUninitialized Storage Pointers

PassTx.Origin Authentication

14

Repl Smart Contracts Review

We are grateful for the opportunity to work with the team.

The statements made in this document should not be interpreted
as an investment or legal advice, nor should its authors be held
accountable for the decisions made based on them.

Zokyo Security recommends the team put in place a bug bounty
program to encourage further analysis of the smart contract by third
parties.

Repl

Repl

